# Quick Start This guide will get you started with the CNG Datasets toolkit. ## Vector Processing Example Process polygon datasets to H3-indexed parquet: ```python from cng_datasets.vector import H3VectorProcessor # Create processor processor = H3VectorProcessor( input_url="s3://my-bucket/polygons.parquet", output_url="s3://my-bucket/h3-indexed/", h3_resolution=10, parent_resolutions=[9, 8, 0], chunk_size=500, ) # Process all chunks output_files = processor.process_all_chunks() ``` ### Command-Line ```bash cng-datasets vector \ --input s3://bucket/input.parquet \ --output s3://bucket/output/ \ --resolution 10 \ --chunk-size 500 ``` ## Raster Processing Example Create Cloud-Optimized GeoTIFFs and H3-indexed parquet: ```python from cng_datasets.raster import RasterProcessor # Create processor processor = RasterProcessor( input_path="wetlands.tif", output_cog_path="s3://bucket/wetlands-cog.tif", output_parquet_path="s3://bucket/wetlands/hex/", h3_resolution=None, # Auto-detect parent_resolutions=[8, 0], ) # Create COG processor.create_cog() # Convert to H3-indexed parquet processor.process_all_h0_regions() ``` ### Command-Line ```bash # Create COG + H3 parquet cng-datasets raster \ --input data.tif \ --output-cog s3://bucket/data-cog.tif \ --output-parquet s3://bucket/data/hex/ \ --resolution 10 \ --parent-resolutions "9,8,0" ``` ## Kubernetes Workflow Example Generate and run a complete K8s workflow: ```bash # Generate workflow files cng-datasets workflow \ --dataset my-dataset \ --source-url https://example.com/data.gpkg \ --bucket public-my-dataset \ --h3-resolution 10 \ --namespace biodiversity \ --output-dir my-dataset/ # Apply RBAC kubectl apply -f my-dataset/workflow-rbac.yaml # Run workflow kubectl apply -f my-dataset/workflow.yaml # Monitor kubectl logs -f job/my-dataset-workflow -n biodiversity ``` ## Next Steps - Learn more about [Vector Processing](vector_processing.md) - Learn more about [Raster Processing](raster_processing.md) - Set up [Kubernetes Workflows](kubernetes_workflows.md) - Configure [S3 Credentials](configuration.md)